organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,9-Bis(2-chlorophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane

Xiao-Yong Wang,^a Jiang-Hua Shi,^a Min Zhang^a and Seik Weng Ng^b*

^aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 19 January 2010; accepted 19 January 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.092; data-to-parameter ratio = 16.5.

The complete molecule of the title compound, $C_{19}H_{18}Cl_2O_4$, is generated by a crystallographic twofold axis that passes through the spiro C atom. The 1,3-dioxane ring adopts a chair conformation and the phenyl substituent occupies an equatorial site.

Related literature

For the crystal structure of 3,9-diphenyl-2,4,8,10-tetra-oxaspiro[5.5]undecane, see: Wang *et al.* (2006).

Experimental

Crystal data C₁₉H₁₈Cl₂O₄

 $M_r=381.23$

Monoclinic, C2/c a = 10.7116 (5) Å b = 9.4693 (5) Å c = 17.7080 (9) Å $\beta = 106.745$ (1)° V = 1719.98 (15) Å³

Data collection

Bruker SMART APEX	6932 measured reflections
diffractometer	1883 independent reflections
Absorption correction: multi-scan	1707 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.015$
$T_{\min} = 0.838, \ T_{\max} = 0.917$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.032 & \qquad 114 \text{ parameters} \\ wR(F^2) = 0.092 & \qquad \text{H-atom parameters constrained} \\ S = 1.00 & \qquad \Delta\rho_{\max} = 0.30 \text{ e } \text{\AA}^{-3} \\ 1883 \text{ reflections} & \qquad \Delta\rho_{\min} = -0.25 \text{ e } \text{\AA}^{-3} \end{array}$

Z = 4

Mo $K\alpha$ radiation

 $0.46 \times 0.42 \times 0.22 \text{ mm}$

 $\mu = 0.40 \text{ mm}^{-1}$

T = 173 K

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Key Subject Construction Project of Hunan Province (No. 2006–180), the Key Scientific Research Project of Hunan Provincial Education Department (No. 08 A023, 05 C736), The NSF of Hunan Province (09 J J3028) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5174).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, J.-K., Yan, D.-Y., Liu, L.-J., Liu, S. & Wang, J.-T. (2006). Acta Cryst. E62, 03062–03063.

Westrip, S. P. (2010). publCIF. In preparation.

supplementary materials

Acta Cryst. (2010). E66, 0426 [doi:10.1107/S1600536810002400]

3,9-Bis(2-chlorophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane

X.-Y. Wang, J.-H. Shi, M. Zhang and S. W. Ng

Experimental

Pentaerythritol (2 g, 0.014 mol), 2-chlorobenzaldehyde(4.6 g, 0.033 mol), toluene (12 ml) and a catalytic amount (0.2 g) of *p*-toluenesulfonic acid were heated for 4 hours. The mixture was cooled and then filtered. The organic phase was washed with water and 5% sodium bicarbonate (20 ml). The solvent was evaporated and the product recrystallized from ethyl acetate to afford colourless crystals (yield 70%); m.p. 418.5–419 K.

Refinement

H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Figures

Fig. 1. Anisotropic displacement ellipsoid plot of $C_{19}H_{18}Cl_2O_4$ at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius.

3,9-Bis(2-chlorophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane

Crystal data	
$C_{19}H_{18}Cl_2O_4$	F(000) = 792
$M_r = 381.23$	$D_{\rm x} = 1.472 \ {\rm Mg \ m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 5105 reflections
a = 10.7116 (5) Å	$\theta = 2.4 - 27.1^{\circ}$
<i>b</i> = 9.4693 (5) Å	$\mu = 0.40 \text{ mm}^{-1}$
c = 17.7080 (9) Å	T = 173 K
$\beta = 106.745 \ (1)^{\circ}$	Block, yellow
$V = 1719.98 (15) \text{ Å}^3$	$0.46 \times 0.42 \times 0.22 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube graphite

1883 independent reflections 1707 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.015$

supplementary materials

ω scans θ_{r}	$_{\rm max} = 27.1^{\circ}, \theta_{\rm min} = 2.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	=−13→13
$T_{\min} = 0.838, T_{\max} = 0.917$ k	=−12→11
6932 measured reflections l=	= −22→22

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.092$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0542P)^2 + 1.3419P]$ where $P = (F_0^2 + 2F_c^2)/3$
1883 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
114 parameters	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	-0.05287 (3)	0.53900 (4)	0.14620 (2)	0.04156 (14)
01	0.30941 (9)	0.51739 (10)	0.13408 (5)	0.0283 (2)
O2	0.31431 (8)	0.34130 (10)	0.22630 (5)	0.0298 (2)
C1	-0.00068 (12)	0.40843 (14)	0.09327 (7)	0.0261 (3)
C2	-0.09394 (12)	0.34711 (16)	0.03040 (8)	0.0329 (3)
H2	-0.1815	0.3799	0.0160	0.040*
C3	-0.05826 (13)	0.23835 (18)	-0.01081 (8)	0.0381 (3)
H3	-0.1214	0.1960	-0.0539	0.046*
C4	0.07000 (15)	0.19038 (18)	0.01047 (9)	0.0398 (3)
H4	0.0941	0.1134	-0.0168	0.048*
C5	0.16221 (13)	0.25578 (16)	0.07170 (8)	0.0342 (3)
Н5	0.2501	0.2242	0.0852	0.041*
C6	0.12931 (12)	0.36636 (14)	0.11379 (7)	0.0259 (3)
C7	0.23515 (12)	0.44177 (14)	0.17524 (8)	0.0265 (3)
H7	0.1960	0.5084	0.2059	0.032*
C8	0.40974 (12)	0.59806 (14)	0.18815 (8)	0.0303 (3)
H8A	0.3692	0.6690	0.2148	0.036*
H8B	0.4614	0.6491	0.1586	0.036*
C9	0.5000	0.50311 (19)	0.2500	0.0240 (3)
C10	0.41483 (12)	0.41154 (15)	0.28641 (7)	0.0291 (3)
H10A	0.4699	0.3402	0.3216	0.035*
H10B	0.3743	0.4715	0.3187	0.035*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}		
C11	0.0294 (2)	0.0446 (2)	0.0492 (2)	0.01101 (14)	0.00891 (16)	-0.00178 (15)		
01	0.0231 (4)	0.0307 (5)	0.0247 (4)	-0.0053 (4)	-0.0034 (4)	0.0058 (4)		
02	0.0220 (4)	0.0323 (5)	0.0290 (5)	-0.0030 (4)	-0.0024 (4)	0.0091 (4)		
C1	0.0204 (6)	0.0298 (6)	0.0271 (6)	0.0012 (5)	0.0051 (5)	0.0078 (5)		
C2	0.0182 (6)	0.0495 (8)	0.0282 (6)	-0.0041 (5)	0.0022 (5)	0.0102 (6)		
C3	0.0283 (7)	0.0560 (9)	0.0275 (6)	-0.0157 (6)	0.0042 (5)	-0.0035 (6)		
C4	0.0353 (7)	0.0459 (9)	0.0389 (8)	-0.0068 (6)	0.0120 (6)	-0.0098 (6)		
C5	0.0223 (6)	0.0391 (7)	0.0390 (7)	0.0011 (5)	0.0055 (5)	-0.0028 (6)		
C6	0.0194 (6)	0.0293 (6)	0.0262 (6)	-0.0012 (5)	0.0024 (5)	0.0052 (5)		
C7	0.0191 (6)	0.0295 (6)	0.0278 (6)	0.0013 (5)	0.0016 (5)	0.0039 (5)		
C8	0.0258 (6)	0.0259 (6)	0.0304 (6)	-0.0036 (5)	-0.0057 (5)	0.0046 (5)		
C9	0.0208 (8)	0.0257 (8)	0.0214 (8)	0.000	-0.0004 (6)	0.000		
C10	0.0224 (6)	0.0376 (7)	0.0232 (6)	-0.0006 (5)	0.0000 (5)	0.0051 (5)		
Geometric para	ameters (Å, °)							
Cl1—C1		1.7384 (14)	С5—	-C6	1.38	38 (2)		
O1—C7		1.4181 (15)	С5—	-H5	0.9500			
O1—C8		1.4361 (15)	С6—	-C7	1.5062 (17)			
O2—C7		1.4141 (15)	С7—	С7—Н7		000		
O2—C10		1.4402 (15)	C8—	-C9	1.5272 (16)			
C1—C2		1.3906 (18)	C8—	C8—H8A		000		
C1—C6		1.3921 (17)	C8—	C8—H8B		000		
C2—C3		1.378 (2)	С9—	C9—C8 ⁱ		1.5272 (16)		
С2—Н2		0.9500	С9—	C9—C10		1.5293 (16)		
C3—C4		1.392 (2)	C9—	C9—C10 ⁱ 1.52		.93 (16)		
С3—Н3		0.9500	C10-	C10—H10A 0 990		000		
C4—C5		1.385 (2)	C10-	C10—H10B		000		
C4—H4		0.9500						
С7—О1—С8		110.41 (9)	01—	-С7—С6	106	.55 (10)		
C7—O2—C10		110.16 (10)	O2—	-С7—Н7	110	.2		
C2—C1—C6		121.55 (13)	01–	O1—C7—H7		110.2		
C2—C1—Cl1		117.40 (10)	С6—	С6—С7—Н7		.2		
C6—C1—Cl1		121.04 (10)	01–	O1—C8—C9		01—C8—C9 111.25 (10		25 (10)
C3—C2—C1		119.41 (12)	O1—C8—H8A 109		.4			
С3—С2—Н2		120.3	С9—С8—Н8А		С9—С8—Н8А 109		.4	
С1—С2—Н2		120.3	O1—C8—H8B		109	.4		
C2—C3—C4	C4 120.21 (13)		С9—	-C8—H8B	109	.4		
С2—С3—Н3	—НЗ 119.9		H8A—C8—H8B		108	.0		
С4—С3—Н3		119.9	C8 ⁱ -		107	.86 (14)		
С5—С4—С3		119.45 (14)	C8 ⁱ -	-C9-C10	111.	27 (7)		
С5—С4—Н4		120.3	C8—	-C9—C10	107	.75 (7)		
С3—С4—Н4		120.3	C8 ⁱ -	C9C10 ⁱ	107	.75 (7)		

Atomic displacement parameters $(Å^2)$

supplementary materials

C6—C5—C4	121.57 (12)	C8—C9—C10 ⁱ	111.27 (7)
С6—С5—Н5	119.2	C10C9C10 ⁱ	110.92 (16)
С4—С5—Н5	119.2	O2—C10—C9	111.10 (9)
C5—C6—C1	117.72 (12)	O2—C10—H10A	109.4
C5—C6—C7	119.39 (11)	С9—С10—Н10А	109.4
C1—C6—C7	122.75 (12)	O2-C10-H10B	109.4
O2—C7—O1	110.28 (9)	С9—С10—Н10В	109.4
O2—C7—C6	109.32 (10)	H10A—C10—H10B	108.0
C6—C1—C2—C3	2.55 (19)	C8—O1—C7—C6	177.43 (10)
Cl1—C1—C2—C3	-176.83 (11)	С5—С6—С7—О2	-50.34 (15)
C1—C2—C3—C4	0.1 (2)	C1—C6—C7—O2	133.95 (12)
C2—C3—C4—C5	-2.1 (2)	C5—C6—C7—O1	68.83 (15)
C3—C4—C5—C6	1.5 (2)	C1—C6—C7—O1	-106.88 (13)
C4—C5—C6—C1	1.0 (2)	C7—O1—C8—C9	58.27 (13)
C4—C5—C6—C7	-174.90 (13)	O1—C8—C9—C8 ⁱ	-171.63 (13)
C2—C1—C6—C5	-3.07 (19)	O1—C8—C9—C10	-51.41 (14)
Cl1—C1—C6—C5	176.29 (10)	O1—C8—C9—C10 ⁱ	70.39 (14)
C2—C1—C6—C7	172.71 (12)	C7—O2—C10—C9	-58.74 (14)
Cl1—C1—C6—C7	-7.93 (17)	C8 ⁱ —C9—C10—O2	169.66 (10)
C10—O2—C7—O1	64.19 (13)	C8—C9—C10—O2	51.61 (14)
C10—O2—C7—C6	-178.97 (10)	C10 ⁱ —C9—C10—O2	-70.41 (9)
C8—O1—C7—O2	-64.03 (13)		

Symmetry codes: (i) -x+1, y, -z+1/2.

Fig. 1